
Asynchronous Object Storage with QoS for Scientific and
Commercial Big Data

Michael J. Brim, David A. Dillow, Sarp Oral, Bradley W. Settlemyer and Feiyi Wang
Oak Ridge National Laboratory

1 Bethel Valley Rd
Oak Ridge, TN 37831

{brimmj,dillowda,oralhs,settlemyerbw,fwang2}@ornl.gov

ABSTRACT
This paper presents our design for an asynchronous object
storage system intended for use in scientific and commercial
big data workloads. Use cases from the target workload do-
mains are used to motivate the key abstractions used in the
application programming interface (API). The architecture
of the Scalable Object Store (SOS), a prototype object stor-
age system that supports the API’s facilities, is presented.
The SOS serves as a vehicle for future research into scalable
and resilient big data object storage. We briefly review our
research into providing efficient storage servers capable of
providing quality of service (QoS) contracts relevant for big
data use cases.

General Terms
HPC Storage, Cloud Storage, Object Storage, Storage QoS

1. INTRODUCTION
Commercial data-intensive computing and simulation sci-

ence have divergent requirements in several areas, but they
share the need for a resilient and scalable infrastructure for
extreme-scale I/O. Recently, computing involving extreme-
scale I/O has been described as Big Data computing, which
is characterized by three key drivers: data volume, data va-
riety, and data velocity. The volume of big data is so mas-
sive that distributed storage systems are required and the
cost of moving the data to a computation resource is pro-
hibitive. The variety of big data concerns the lack of com-
mon structure to the data, which is attributable to many
data sources and, to a lesser degree, data structures that
evolve over time. This variety prevents the direct use of
relational database technology that requires static schemas
describing the structure of the data. The velocity of big
data refers to an inability to analyze data at the rate at
which it is produced and the compounding nature of new
data generated during analysis.

Commerical big data processing and analysis systems are

(c) 2013 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an employee, contractor
or affiliate of the national government of United States. As such, the Gov-
ernment retains a nonexclusive, royalty-free right to publish or reproduce
this article, or to allow others to do so, for Government purposes only.
PDSW13 November 18, 2013, Denver, CO, USA
Copyright 2013 ACM 978-1-4503-2305-9/13/11 ...$15.00.
http://dx.doi.org/2538542.2538565.

in widespread use. These systems include: (1) map-reduce
infrastructures [8, 27] that provide fault-tolerant, throughput-
oriented batch processing and analysis of large datasets, (2)
key-value stores [9] supporting low-latency storage and re-
trieval of relatively small data, and (3) multi-dimensional
maps [6, 16] that extend the capabilities of key-value stores
to support fast access to many named values (or columns)
per key. Ideally, these mature commercial-grade systems
could be directly leveraged for storage and analysis of sci-
entific big data. The foremost barrier to adoption is that
scientific data is used in a tightly-coupled, computationally
intensive manner that is at odds with the loosely-coupled,
data intensive processing provided by commercial systems.

Scientific data generation and analysis involves distributed
processes that coordinate to advance a simulation according
to a stateful scientific model. Such coordinated, stateful
data evolution is inefficient to perform in systems such as
Hadoop. Parallel and distributed file systems based on ob-
ject storage [29, 31], have cleared a path to extreme-scale
I/O by addressing scalability barriers related to metadata
management, distributed locking, and incremental provi-
sioning. Improvements have also been made in file system re-
silience through object replication. Still, these object-based
file systems are often designed to perform well for a spe-
cific class of workload, either scientific or commercial, and
thus are not generally applicable. Current systems are also
plagued by performance variability due to competing work-
loads, which makes it difficult to optimize I/O in applica-
tions and limits the overall utilization of the storage system.

Our research goal is to design and evaluate object storage
technologies that address the issues of scalability, resiliency,
and performance for multiple big data workloads. To this
end, we have identified four research objectives:

1. Examine how an asynchronous object I/O model en-
ables performance and utilization benefits when schedul-
ing access to storage resources,

2. Develop techniques for ensuring storage quality of ser-
vice (QoS) that eliminates performance variability un-
der competing workloads,

3. Evaluate object resilience in terms of consistency and
performance on multi-tiered storage systems contain-
ing heterogeneous storage media, and

4. Develop in-transit object data transformation and pro-
cessing capabilities to support tightly-coupled and loosely-
coupled analysis.

7

In this we paper describe our initial efforts to address the
first two research objectives. Section 2 describes the use
cases in scientific and commercial big data that motivate
our object storage system design and the benefits of slotted
QoS in reducing performance degradation due to workload
interference. Section 3 introduces the Scalable Object Store
(SOS) and its corresponding API (libsos), and describes our
prototype implementation of the SOS. In Section 4 we briefly
discuss our future research. Finally, Section 5 differentiates
our research from prior work in scientific and commercial
big data systems.

2. BIG DATA USE CASES
Our design for an asynchronous object storage system is

motivated by the interaction between two fundamental use
cases: scientific application checkpointing and statistical in-
ferential data analysis. No existing storage system is well
suited to accelerate both use cases. Our designs go beyond
accelerating each use case in isolation, rather our goal is to
support both Big Data use cases from within a single storage
system instance. A primary problem preventing the use of
a single storage system for simultaneously supporting inten-
sive read and write scenarios is the effects of storage device
interference. Even well-formed checkpointing and analysis
applications will generate substantial performance degrada-
tion due to the disk heads seeking between unallocated disk
regions to support writes to previously allocated disk regions
to support reads. Here we briefly describe the requirements
imposed by each application use case, and then present ex-
perimental results showing the performance effects of inter-
ference.

2.1 Scientific Application Checkpoints
Due to the sheer number of components in current petas-

cale supercomputers such as Titan [21] and Sequoia [17],
the expected mean-time-to-interruption (MTTI) for large-
scale applications is less than one day. For long running
simulations, application checkpoints are necessary to ensure
progress in the presence of system failures and interruptions.
Large-scale application checkpoint workloads consist pro-
cesses concurrently writing data to the storage system peri-
odically and occasionally reading checkpoint data to restart
after interruptions. We estimate the maximum practical size
of checkpoint data as 75% of the physical memory size of
compute nodes used by the application. On systems like Ti-
tan, which contains over 18,600 compute nodes each with 32
gigabytes of memory, an application could write up to 450
terabytes of checkpoint data. Current petascale applications
store checkpoints on the order of every four to eight hours.
For exascale systems, it is expected that failure rates will
require applications to checkpoint as often as every hour.

Modern scientific applications rely upon checkpoint libraries
such as parallel NetCDF [18] and HDF5 [10] that provide
portable and hierarchical organization of complex data while
hiding the details of parallel I/O, as compared to older appli-
cations that use application-specific checkpoint data formats
and custom distribution of checkpoint I/O among processes.
Both netCDF and HDF5 use similar abstractions for man-
aging complex data. These abstractions include datasets,
groups, and attributes. Datasets, known as variables in
netCDF, are multi-dimensional arrays of (possibly complex)
data types. Groups are metadata abstractions for associ-
ating datasets and other groups. Attributes are key-value

pairs that provide metadata to annotate a dataset or group.

2.2 Statistical Data Analytics
Commercial Cloud Storage (i.e., SaaS, PaaS, and IaaS)

storage requirements can vary greatly between customers,
with application-dependent I/O patterns and data sizes rang-
ing from a few gigabytes to hundreds of terabytes. Amazon
Simple Storage Service (S3) [3], Google Cloud Storage [13],
and Microsoft Windows Azure Storage [19] are commonly
used virtual storage platforms. In addition to virtual stor-
age for cloud customers, data used to manage the business
operations of cloud and e-commerce providers may also re-
side in cloud storage. Commercial clients mine the large
quantities of data in clouds using data processing techniques
based on tools such as Google’s BigQuery [12] or Amazon’s
DynamoDB [9] and Elastic MapReduce [2]. The analysis
methods rely on statistical inference (rather than statistical
description) to identify interesting phenomena within the
data. These tools are capable of providing much better data
mining throughput by limiting data movement, and instead
serializing and transporting the code such that bottom-up
data analysis is typically performed at or near the individ-
ual storage servers. Inferential analysis typically involves
reading huge amounts of data, on the order of terabytes or
petabytes, although the individual datums being analyzed
may be comparatively small. Following each analysis phase,
a data reduction is performed that summarizes the results
for that piece of data analysis.

2.3 Experimental Measurement of Interference
Our construction of a distributed QoS reservation scheme

is still rudimentary, however we have performed several ex-
periments demonstrating the destructive interference caused
by storage servers simultaneously servicing read and write
requests. We configured a disk profile tool, XDD [14] to
generate file read accesses and then added multiple file writ-
ers to simulate the costs of performing scientific checkpoints
while a data analysis job is ongoing. We then leveraged
XDD’s lockstep command mode to service each of the file
access streams in isolation. We divided each second into 16
access slots, and the files were serviced only during desig-
nated slots in round robin order. In every configuration we
are using 4 I/O threads per file, direct I/O to bypass Linux
block caching (common on systems with fast attached stor-
age), 4MiB request sizes, and file sizes of at least 64GiB of
randomly generated data.

In Figure 1 we demonstrate the effects of slotted access us-
ing a single SUSE 11 Linux server connected via Fibrechan-
nel to an Infortrend EonStore S16F-R1430 (configured at
RAID level 5 with 64KiB stripes). The storage network fab-
ric was provided by a Brocade Silkworm 4100 switch. The
local file system used on the storage server was XFS, config-
ured to match the storage hardware. Along the X-axis we
fix a single reading client (4 threads) and then add writers
(4 threads per file). We feel there is significant opportunity
for performance improvement via tuning. To that end we in-
cluded our best tuned single file read and write performance
numbers; however, until we include the network components
of our storage server for our targeted use cases we avoided
speculative storage optimizations [25].

In Figure 2 we show the data collected for a high end
Hewlett-Packard DL585 G7 storage server using a local 5TB
FusionIO PCIe Flash device. The host provides 48 cores,

8

 0

 200

 400

 600

 800

 1000

 1200

 1 4 8 12 16 20 24 28 32 36

M
B

/s

Files Accessed

Tuned File Read

Tuned File Write

Slotted Access

Simultaneous Access

Figure 1: QoS Access Schemes with a Disk Array

 0

 2000

 4000

 6000

 8000

 10000

 1 4 8 12 16 20 24 28 32 36

M
B

/s

Files Accessed

Tuned File Read

Tuned File Write

Slotted Access

Simultaneous Access

Figure 2: QoS Access Schemes for PCIe Flash

384GB of memory, runs RHEL 6, and we used a local XFS
file system to access the storage device. We also used the nu-
mactl tool to pin XDD worker threads to the NUMA node
closest to the storage device. Because the FLASH device
imposed no seek penalty, as we added simulataneous access
clients, performance decreased primarly due to excess I/O
threads. By dividing each second of service time into ap-
proximately 16 slots, our QoS access scheme was able to
generate higher, more stable performance by controlling the
number of I/O threads. We have included our best tuned
single file access for this device, but have not employed any
advanced tuning in our multiple file access runs.

The experiment results demonstrate that on modern stor-
age media, whether traditional disk drives or high-end solid
state devices, simultaneous access to multiple files (including
a mix of read and write jobs) reduces storage server perfor-
mance, even when the access size is large. Further, a slotted
access scheme offers the opportunity to maintain high lev-
els of I/O performance. Our slotting scheme goes further
and demonstrates that an I/O slotting scheme may success-
fully use multiple I/O threads, which improves disk access
performance but also increases the slot switching time as it
waits for multiple threads to complete. There is no techni-
cal reason that requires waiting for all threads to complete
their I/O before servicing the next slot; however we felt that
this level of synchronization presented the most conservative
view of the performance data.

Figure 3: Object Collection Namespace

3. SCALABLE OBJECT STORAGE
In this section we introduce the Scalable Object Store

(SOS). A fundamental goal of the object service is to pro-
vide all storage service interactions asynchronously. An ear-
lier asynchonous storage system, the lightweight file system,
leveraged asynchrony in order to overlap computation and
storage system access [22]. For our targeted use cases, check-
pointing and data mining, the system memory constraints
typically do not allow enough available excess memory to
overlap computation and storage access. When the applica-
tion processes require all of the system memory, there simply
is no buffer space available to perform concurrent data mod-
ification; this is particularly true for scientific applications
where the next memory state is dependent upon the current
memory state. Instead, we leverage client asynchrony to al-
low better storage resource scheduling at the servers [15, 24],
allowing the storage servers to initiate and control storage
system access. Further, the semantics of object-based stor-
age access remove the potential requirement that distributed
clients coordinate storage system access to eliminate inter-
application interference.

3.1 Object Storage Abstractions
Our design for an object storage system that supports

Big Data relies on three key abstractions: objects, object
collections, and object lockers. We define an object as a
named data buffer. Objects are expected to range in size
from small (e.g., a few kilobytes to store the value associ-
ated with some key) to very large (e.g., a multi-gigabyte
dataset). The amount of data that can be stored in a single
object is unbounded by design, though practical implemen-
tations may impose limits due to storage device capabilities.
Objects may contain holes, which permits the storage of
sparse data.

Organization of objects is provided by two forms of ob-
ject collections: lists and maps. An object list is a named
collection of objects. An object map is a named associative
collection of object lists, where each list is associated with
its unique name. Both forms of object collections support
direct lookup by name and provide iterators for enumerating
the collection. As shown in Figure 3, object collections pro-
vide a three-level name space. Additional levels of hierarchy
can be achieved by storing the names of other objects, lists,
or maps in an object.

The final and most important abstraction in our object

9

storage design is the object locker, a dynamically-provisioned,
named allocation of storage resources that provides three
critical services: (1) an isolated name space for objects and
object collections, (2) data resiliency via customizable object
replication, and (3) storage quality of service (QoS). Object
lockers provide name spaces that are private to a particu-
lar user or group; only applications run by the user/group
can store and retrieve objects and manage object collections.
Private name spaces for file systems [11, 20, 23] have long
been seen as a way to simplify user access to data and im-
prove productivity, and we believe these benefits hold true
for object storage. For cloud storage platforms that service
many users, name space isolation is a mandatory require-
ment to meet privacy expectations.

Data resiliency in our object storage system is provided in
terms of replicating individual objects. Replication param-
eters, such as number of replicas and object data striping,
are specified for all objects in a locker when the locker is
created. Object placement is also determined by the locker
rather than the client, a natural extension of the intrinsic
asynchrony of the proposed interfaces. Object lockers also
provide storage QoS guarantees that are negotiated when
a locker is created. Storage QoS, broadly defined, concerns
the management of contracts negotiated between clients and
shared storage servers. These contracts specify expected lev-
els of I/O performance and availability of resources, and are
commonly known as service-level agreements (SLAs).

3.2 libsos API Types
Each of the primary abstractions in the API (i.e., storage

lockers, objects, object lists, and object maps) is represented
by an opaque handle struct. A handle contains a field id of
type sos id t that serves to uniquely identify the target to
the libsos client. Note that the same target may have a dif-
ferent identifier (id) when accessed by a different client. Us-
ing client-unique ids avoids the common scalability barriers
associated with distributed consensus in the management of
globally unique ids. The object list and map collections also
provide iterators. Synchronous request functions return an
integer enumeration that indicates success or a failure con-
dition. Asynchronous request functions return a globally
unique id of type sos req t. Each client maintains a counter
to generate local request ids. The client’s unique id, a com-
bination of host and process ids, is then prepended to the
counter value to derive the global request id.

3.3 libsos API Functions
The first action taken by a client is to connect to the

SOS (a companion function is used to cease interactions
with the SOS). Once a connection has been made, a client
proceeds to create or discover object lockers. Because all
objects and object collections are stored in lockers, a valid
locker handle must be obtained that can be passed to oper-
ations on objects or collections. Lockers are created using
the sos locker create function and destroyed using
sos locker destroy. The latter function implicitly deletes all
objects and collections stored in the locker. Existing lock-
ers can be found using sos locker find, which searches for a
locker having a specified name, or by listing all existing lock-
ers with sos locker list. The latter function lists only lockers
for which the client has access permissions. Currently the
functions for managing lockers are defined as synchronous
requests. Our intention is to enable asynchronous locker

requests in the future.
Given a valid locker handle, clients can begin operating on

objects and object collections in that locker. The API pro-
vides optimistic retrieval functions that search for a target
object or collection by name and either return the existing
target or create a new target with that name. Optimistic re-
trieval allows groups of clients operating on the same target
to concurrently submit asynchronous get requests without
coordinated locking. For a new target, the first request pro-
cessed by the SOS will create the target and subsequent get
requests will return the new target. To query existing tar-
gets without implicit creation, the API also provides lookup
functions that simply check for existence. Objects can be
explicitly created using sos obj create, which is passed an
initial data buffer to use as the object’s contents. Destruc-
tion of objects and collections is provided by the functions
sos obj destroy, sos list destroy, and sos map destroy. Ob-
jects provide asynchronous I/O operations including
sos obj read, sos obj write, sos obj append, and
sos obj truncate. In addition to the standard data buffer
and byte count, the read and write operations require an
explicit offset, since object I/O is not byte-stream oriented.
The size of an object is defined as the offset of the last valid
byte, and can be retrieved using sos obj get size.

Object collections are managed using asynchronous insert
and remove operations. Object lists permit multiple ob-
jects to be inserted or removed at once using sos list insert
and sos list remove. Conversely, the object map functions
sos map insert and sos map remove operate on a single ob-
ject list associated with a given key. Clients are informed
of asynchronous request completion in one of two ways. A
client can poll for the status of a particular request or can
register a callback function that will be executed when the
request completes. Additionally, clients may use the func-
tion sos req group to generate a sos req t that represents a
group of outstanding requests. This group request id can
then be polled to wait for completion of all requests in the
group. Outstanding requests can be explicitly canceled us-
ing sos req cancel. Cancellation does not interrupt requests
that are actively being serviced, which prevents partial I/O
operations by ensuring a canceled request is either never ser-
viced or runs to completion. Once a request completes or
is canceled, a client must finalize the asynchronous request
by calling sos req retire. When passed a group sos req t,
sos req retire will finalize all requests in the group. At-
tempts to disconnect from the SOS will fail until all requests
have been retired.

3.4 SOS Architecture
We have developed a prototype version of the SOS in sup-

port of the libsos API. This prototype serves two purposes.
First, it allows for direct experimentation with a variety of
scientific and commercial big data workloads, which helps
to ensure the abstractions provided by the API are suit-
able in terms of both usability and scalability. Second, it
provides a vehicle for further research in scalable, resilient,
and high-performance techniques for big data object stor-
age, particularly in our current focus areas of storage QoS
and in-situ data processing.

The SOS prototype architecture is shown in Figure 4.
Client applications are linked with the libsos library. The
library manages interactions with one or more storage lock-
ers in the SOS. Lockers are virtual allocations of SOS server

10

Applica'on	 A	

libsos

Applica'on	 B	

libsos

Applica'on	 C	

libsos

Object	 Storage	
Server	

Locker	 A	 Locker	 C	 Lockers	 B.1,	 B.2	

Locker A
slot @
t=120 for
5 min

Manager	 Thread	 Locker	 Worker	
Thread	

Start I/O

Stop I/O

Locker	
Request	
Queue	

Asynchronous	 Object	 I/O	 Layer	 RADOS,	
POSIX	 AIO	

Issue
Req

I/O	

Locker A
reservation

request

Figure 4: Scalable Object Storage Architecture

resources, and thus each server may manage data from one
or more lockers. For each locker in active use, the client
maintains a locker request queue (LRQ) that holds the out-
standing asynchronous requests for objects and collections
stored in the locker. Object collections are stored as ob-
jects that contain appropriate meta-data (i.e., the names
of collection members, etc.); we refer to these objects as
meta-objects. Associated with each LRQ is a worker thread
that is responsible for issuing and notifying completion of
requests. Worker threads within a client are scheduled by a
manager thread. Currently, the manager thread uses round-
robin scheduling of workers for active lockers. In our future
work on QoS, the manager thread will be updated to receive
instructions from the SOS as to when each worker thread
should be activated based on the negotiated locker service
level.

While a worker thread is active, it issues the requests in
its LRQ and monitors their progress. Requests are issued by
calling methods in a generic interface layer for asynchronous
object I/O. In the current prototype, we have two implemen-
tations of the generic object I/O interface. The first imple-
mentation leverages the RADOS object storage system and
API that is developed as part of the Ceph distributed file
system. The second implementation uses the POSIX asyn-
chronous I/O interface for interactions with existing parallel
or distributed file systems.

Due to the asynchronous API provided by SOS, stor-
age servers are able to offer dedicated access for an inter-
val (called a slot) to active lockers. Each server services
multiple lockers, but only one locker during each interval.
When a client requests the creation of an object locker, the
storage servers use the request as a reservation request to
achieve a quality of service for the specified time interval.
For example, a scientific checkpoint application that wishes
to checkpoint once an hour will create a new object locker
per checkpoint, which will result in a storage reservation for
that checkpoint. Within that locker request the application
will describe the size and desired deadline time of the check-
point data, and the storage server will generate a locker
allocated with sufficient time slots on the storage servers to
perform the requested service.

4. CONCLUSION
The libsos API has been designed to support asynchronous

operation from the outset. To support this asynchrony, we

have developed two novel storage system abstractions for im-
proved isolation: object collections and lockers. Object col-
lections offer a limited hierarchical name space that is useful
for organizing and associating data objects. Lockers provide
redundancy and isolation for dynamically provisioned stor-
age resources. With these basic abstractions we are able to
employ a distributed QoS scheme based on reservations and
packet-based media access control (which is similar to using
time slots with a distributed coordination function).

As we continue developing our prototype we are focus-
ing on supporting additional scientific and commercial cloud
usage scenarios. In the scientific realm, we are interested
in accelerating the I/O patterns associated with data vi-
sualization and distributed application performance traces.
The small, unaligned accesses that frequently result under
both use cases are not good candidates for locality-based
prefetching, and are instead most likely to benefit from a
“thinner” I/O system that provides efficient access to stor-
age. In the commercial storage scenarios we are most in-
terested in improving the dyanmism in our existing sys-
tem design. Cloud providers have created scalable key-value
datastores and multi-dimensional maps to serve as highly-
available storage for mission-critical application data and
customer data. Compared to files in virtual storage systems,
the datastore entries per key are relatively small, typically
less than one megabyte. This challenging scenario again
results in small storage system accesses that may generate
large amounts of interference with competing workloads.

5. RELATED WORK
Several distributed and parallel file systems [5, 31], have

adopted an underlying object storage model while still ex-
posing a POSIX file system to clients. In these systems, ob-
jects are used to store contiguous portions of a file’s linear
byte stream, but clients are given no direct methods for ac-
cessing and managing objects. In contrast, systems such as
Intel’s Distributed Application Object Storage (DAOS) [4],
Ceph’s RADOS [30], Sirocco [7], and Ursa Minor [1] eschew
the traditional file interface in favor of direct operations on
objects. The purely object-based SOS system and API is
most similar to and draws inspiration from both DAOS and
RADOS. DAOS containers and RADOS pools are very sim-
ilar in concept to our object storage lockers, as both provide
isolated name spaces and support configurable object redun-
dancy. Similar to DAOS, all operations on objects in SOS
are asynchronous. One of the key differences in our concept
of storage lockers is support for QoS to guarantee perfor-
mance among competing workloads. Initial work to support
QoS in Ceph [32] focused on designing a new object-aware
disk scheduler for use in object storage servers. Our QoS
scheme is derived from existing work [28, 26, 33] however
we add a distributed reservation and coordination scheme
to support distributed clients.

6. ACKNOWLEDGMENTS
Research sponsored by the Laboratory Directed Research

and Development Program of Oak Ridge National Labo-
ratory, managed by UT-Battelle, LLC, for the U. S. De-
partment of Energy. This work was also supported by the
Department of Defense (DoD) and used resources at the Ex-
treme Scale Systems Center, located at Oak Ridge National
Laboratory and supported by DoD.

7. REFERENCES
[1] M. Abd-El-Malek, W. V. Courtright, II, C. Cranor,

G. R. Ganger, J. Hendricks, A. J. Klosterman,
M. Mesnier, M. Prasad, B. Salmon, R. R. Sambasivan,
S. Sinnamohideen, J. D. Strunk, E. Thereska,
M. Wachs, and J. J. Wylie. Ursa minor: versatile
cluster-based storage. In Proceedings of the 4th
conference on USENIX Conference on File and
Storage Technologies - Volume 4, FAST’05, pages 5–5,
Berkeley, CA, USA, 2005. USENIX Association.

[2] Amazon Web Services, Inc. Amazon Elastic
MapReduce (Amazon EMR).
http://aws.amazon.com/elasticmapreduce/, 2013.

[3] Amazon Web Services, Inc. Amazon S3, cloud
computing storage for files, images, videos.
http://aws.amazon.com/s3/, 2013.

[4] E. Barton. Fast forward i/o and storage.
http://www.pdsw.org/pdsw12/slides/

keynote-FF-IO-Storage.pdf, 2012.

[5] P. H. Carns, W. B. Ligon, III, R. B. Ross, and
R. Thakur. Pvfs: a parallel file system for linux
clusters. In Proceedings of the 4th annual Linux
Showcase & Conference - Volume 4, ALS’00, pages
28–28, Berkeley, CA, USA, 2000. USENIX
Association.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for
structured data. ACM Trans. Comput. Syst.,
26(2):4:1–4:26, June 2008.

[7] M. Curry, R. Klundt, and H. Ward. Using the Sirocco
file system for high-bandwidth checkpoints. Technical
Report Technical Report SAND2012-1087, Sandia
National Laboratory, February 2012.

[8] J. Dean and S. Ghemawat. Mapreduce: a flexible data
processing tool. Commun. ACM, 53(1):72–77, Jan.
2010.

[9] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s highly available key-value store.
In Proceedings of twenty-first ACM SIGOPS
symposium on Operating systems principles, SOSP
’07, pages 205–220, New York, NY, USA, 2007. ACM.

[10] M. Folk, G. Heber, Q. Koziol, E. Pourmal, and
D. Robinson. An overview of the hdf5 technology suite
and its applications. In Proceedings of the
EDBT/ICDT 2011 Workshop on Array Databases, AD
’11, pages 36–47, New York, NY, USA, 2011. ACM.

[11] D. K. Gifford, R. M. Needham, and M. D. Schroeder.
The cedar file system. Commun. ACM, 31(3):288–298,
Mar. 1988.

[12] Google, Inc. Google BigQuery - cloud platform.
https://cloud.google.com/products/big-query/,
retrieved June 2013.

[13] Google, Inc. Google Cloud Storage - cloud platform.
https:

//cloud.google.com/products/cloud-storage/,
retrieved June 2013.

[14] I/O Performance, Inc. Xdd: The extreme dd toolset.
https://github.com/bws/xdd, 2013.

[15] D. Kotz. Disk-directed i/o for mimd multiprocessors.

In Proceedings of the 1st USENIX conference on
Operating Systems Design and Implementation, OSDI
’94, Berkeley, CA, USA, 1994. USENIX Association.

[16] A. Lakshman and P. Malik. Cassandra: a
decentralized structured storage system. SIGOPS
Oper. Syst. Rev., 44(2):35–40, Apr. 2010.

[17] Lawrence Livermore National Laboratory. ASC
Sequoia. https:
//asc.llnl.gov/computing_resources/sequoia/,
October 2012.

[18] J. Li, W.-k. Liao, A. Choudhary, R. Ross, R. Thakur,
W. Gropp, R. Latham, A. Siegel, B. Gallagher, and
M. Zingale. Parallel netcdf: A high-performance
scientific i/o interface. In Proceedings of the 2003
ACM/IEEE conference on Supercomputing, SC ’03,
pages 39–, New York, NY, USA, 2003. ACM.

[19] Microsoft, Inc. Storage - windows azure service
management. http://www.windowsazure.com/en-us/
manage/services/storage/, 2013.

[20] B. C. Neuman. The Prospero file system: A global file
system based on the virtual model. Computing
Systems, 5:407–432, 1992.

[21] Oak Ridge National Laboratory. Introducing Titan -
the world’s no. 1 open science supercomputer.
http://www.olcf.ornl.gov/titan/, 2012.

[22] R. A. Oldfield, P. Widener, A. B. Maccabe, L. Ward,
and T. Kordenbrock. Efficient data-movement for
lightweight I/O. In Proceedings of the 2006
International Workshop on High Performance I/O
Techniques and Deployment of Very Large Scale I/O
Systems, Barcelona, Spain, September 2006.

[23] H. C. Rao and L. L. Peterson. Accessing files in an
internet: The Jade file system. IEEE Trans. Softw.
Eng., 19(6):613–624, June 1993.

[24] K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and
M. Winslett. Server-directed collective i/o in panda.
In Proceedings of the 1995 ACM/IEEE conference on
Supercomputing (CDROM), Supercomputing ’95, New
York, NY, USA, 1995. ACM.

[25] B. W. Settlemyer, J. D. Dobson, S. W. Hodson, J. A.
Kuehn, S. W. Poole, and T. M. Ruwart. A technique
for moving large data sets over high-performance long
distance networks. In Proceedings of the 2011 IEEE
27th Symposium on Mass Storage Systems and
Technologies, MSST ’11, pages 1–6, Washington, DC,
USA, 2011. IEEE Computer Society.

[26] D. Shue, M. J. Freedman, and A. Shaikh. Performance
isolation and fairness for multi-tenant cloud storage.
In Proceedings of the 10th USENIX conference on
Operating Systems Design and Implementation,
OSDI’12, pages 349–362, Berkeley, CA, USA, 2012.
USENIX Association.

[27] The Apache Software Foundation. Apache Hadoop.
http://hadoop.apache.org, 2013.

[28] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R.
Ganger. Argon: performance insulation for shared
storage servers. In Proceedings of the 5th USENIX
conference on File and Storage Technologies, FAST
’07, pages 5–5, Berkeley, CA, USA, 2007. USENIX
Association.

[29] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long,
and C. Maltzahn. Ceph: a scalable, high-performance

12

distributed file system. In Proceedings of the 7th
symposium on Operating systems design and
implementation, OSDI ’06, pages 307–320, Berkeley,
CA, USA, 2006. USENIX Association.

[30] S. A. Weil, A. W. Leung, S. A. Brandt, and
C. Maltzahn. RADOS: a scalable, reliable storage
service for petabyte-scale storage clusters. In
Proceedings of the 2nd international workshop on
Petascale data storage: held in conjunction with
Supercomputing ’07, PDSW ’07, pages 35–44, New
York, NY, USA, 2007. ACM.

[31] B. Welch, M. Unangst, Z. Abbasi, G. Gibson,
B. Mueller, J. Small, J. Zelenka, and B. Zhou. Scalable
performance of the Panasas parallel file system. In
Proceedings of the 6th USENIX Conference on File
and Storage Technologies, FAST’08, pages 2:1–2:17,
Berkeley, CA, USA, 2008. USENIX Association.

[32] J. C. Wu and S. A. Brandt. Providing quality of
service support in object-based file system. In
Proceedings of the 24th IEEE Conference on Mass
Storage Systems and Technologies, MSST ’07, pages
157–170, Washington, DC, USA, 2007. IEEE
Computer Society.

[33] X. Zhang, K. Davis, and S. Jiang. QoS support for
end users of i/o-intensive applications using shared
storage systems. In Proceedings of 2011 International
Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’11, pages
18:1–18:12, New York, NY, USA, 2011. ACM.

13

